Profil saya :

Foto Saya
Rembang, Central Java, Indonesia
Guru SMP N 1 Pamotan

METODE HANDTRyMATIKA

Oleh Tribudiono, SMP N 1 Pamotan

Metode HANDTRyMatika merupakan metode hitung perkalian jari tangan. Metode ini dilatarbelakangi dari keprihatinan penulis saat mengajar fisika dan matematika yang penulis laksanakan. Ada persoalan mendasar yang harus dicarikan solusi, mengapa anak-anak tidak memiliki cara mudah menyelesaikan perkalian angka-angka? Padahal berhitung merupakan syarat mutlak dalam menyerap dan mengaplikasikan ilmu pengetahuan dalam kehidupan.

Metode ini, merupakan proses penyempurnaan dari konsep-konsep yang penulis temukan dan ditemukan bukan karena ketidaksengajaan. Tetapi proses yang ditempuh sesuai kaidah-kaidah ilmiah. Dan metode ini telah ujicobakan dan dipraktekan di sekolah tempat penulis bekerja dan telah dipublikasikan dalam buletin pelangi pendidikan Vol. 2 No. 2 Tahun 1999/2000; ISSN 1410-4504, yang dalam publikasi penulis memberi judul ” Menghitung Perkalian Angka Menggunakan Jari-Jari Tangan”. Tulisan terdahulu Juga pernah disampaikan dalam pertemuan di BPG Jawa Tengah ketika penulis mengikuti Diklat. (meskipun agenda tersebut tidak ada dalam acara tersebut).

Foto-Foto hasil Publikasi di buletin Pelangi milik Depdiknas Pusat Tahun 1999.

Metode hitung jari tangan, akhir-akhir ini bermunculan, dari mereka mengklaim bahwa mereka sebagai penemunya. Tetapi penulis timbul pertanyaan benarkah mereka sebagai penemu? Karena sebenarnya penulis sendiri yang sejak tahun 1999 telah mempublikasikan tidak berani mengklaim sebagai penemu konsep hitung jari tangan meskipun cara-cara perhitungan yang penulis sampaikan jelas-jelas berbeda dari dasar perhitungan terdahulu, yaitu hitungan 6, 7, 8, 9. Terlepas dari polemik tersebut penulis sungguh merasa senang. Karena pada mereka yang mengembangkan konsep hitung jari tangan memiliki tujuan yang sama yaitu membantu kepada mereka yang mengalami kesulitan dalam berhitung perkalian.

Oleh karena itu dari tulisan ini, penulis memberanikan diri menyampaikan konsep hitung perkalian angka menggunakan jari tangan yang penulis kembangkan yang penulis sebut ”METODE HANDTRyMATIKA”. Metode HANTRyMATIKA mengandung arti ”HAND” berarti tangan dan TRy dari kata ”ENTRY” yang berarti masuk secara tersembunyi memasukkan kata Try dari nama penulis yakni Tri Budiyono. Metode HANTRyMATIKA dapat diartikan sebagai suatu cara dalam proses hitung perkalian angka dengan memasukkan alat bantu jari tangan yang dimiliki oleh seseorang.

DASAR PEMIKIRAN

Ketika kita mengoperasikan bilangan perkalian suatu bilangan lebih besar dari angka 5 dapat dipastikan kita akan melakukan proses yang sangat rumit bilamana kita tidak hafal dengan bilangan-bilangan tersebut perhatikan perkalian-perkalian berikut:

6 x 6 = 6 + 6 + 6 + 6 + 6 + 6 = 36 ;

6 x 7 = 7 + 7 + 7 + 7 + 7 + 7 = 42

....................................................

dan bagaimana dengan bilangan yang lain? Misalnya 67 x 78 ; 687 x 789678; 89769 x 7896787 dan sebagainya tentu kita akan memerlukan energi yang banyak untuk menghitung angka-angka tersebut. Bahkan orang akan menjadi bosan dengan angka-angka tersebut, sehingga mereka belum melangkah lebih jauh telah bertemu dengan

angka-angka yang membosankan. Padahal tidak mudah mendapatkan alat bantu yang dipergunakan dalam perhitungan karena setiap saat tidak tersedia. Disaat-saat tertentu belum pasti dapat digunakan. Maka jari tangan adalah solusinya untuk membantu mengoperasikan angka-angka tersebut.

DASAR TEORITIS

Angka Desimal

Angka desimal dipakai pertama kali oleh bangsa arabic (Timur Tengah) diantaranya dinotasikan dengan bilangan pokok ( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) sedang nilainya berdasarkan posisi bilangan diantaranya sebagai: ....,sepersepuluh, satuan, puluhan, ratusan, ribuan,....., dst. Sebagai contoh:

4673

3 satuan

7 puluhan

6 ratusan

4 ribuan

nilainya : 4 ribuan + 6 ratusan + 7 puluhan + 3 satuan, dibaca empat ribu enam ratus tujuh puluh tiga.

Teori Bilangan

  1. Bilangan sail (Asli)
    Bilangan sail adalah bilangan bulat positif.
    contoh
    1,2,3,4,5,6,8,.....
  2. Bilangan cacah
    Bilangan cacah adalah bilangan bulat positif digabung dengan nol.
    0,1,2,3,4,5,6,....
  3. bilangan bulat
    bilangan bulat adalah bilangan yang terdiri dari seluruh bilangan baik negatif, nol, dan positif.
    ...,-3,-2,-1,0,1,2,3,...

Konsep Perkalian

Perkalian

Notasi perkalian adalah x ; Perkalian merupakan bentuk penjumlahan berulang dapat dilakukan:

Dengan Cara biasa:

Contoh: 8 x 6 = 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 = 48

Dengan Cara Tersusun:

+4

97

76 x

582

679 +

7372

Sifat-sifat Perkalian yang berlaku:

~ Sifat Komutatif ( pertukaran) ; a x b = b x a

~ Sifat asosiatif ( pengelompokan) ; (a x b ) x c = a x (b x c)

~ Sifat nol dalam perkalian berarti penghapusan bilangan yang

nilainya nol; a x 0 = 0

~ Angka satu (1) sebagai bilangan identitas yang bila dikalikan =

bilangan itu sendiri. ( a x 1 ) = a.

NUMERIK PADA METODE HANDTRyMATIKA

Untuk menggunakan jari-jari tangan sebagai numerik penggunaan dimulai dari angka berikut ini, sedang hitungan dimulai dari kelingking yang dilipat.

  1. Jari Kelingking yang dilipat sebagai angka Ax + 1

{1, 11,21,31,41,51,61,71,81,91,101, ...., Ax + 1}

b. Jari kelingking dan jari manis, yang dilipat sebagai angka :

Ax + 2

{2, 12,22,32,42,52,62,72,82,92,102, ...., Ax + 2}

  1. Jari kelingking, jari manis dan jari tengah yang dilipat sebagai angka: (Ax + 3)

{3, 13,23,33,43,53,63,73,83,93,103, ...., Ax + 3}

  1. Jari kelingking, jari manis, jari tengah dan Jari telunjuk dilipat sebagai angka : (Ax + 4)

{4, 14,24,34,44,54,64,74,84,94,104, ...., Ax + 4}

  1. Semua jari dilipat sebagai angka : (Ax + 5)

{5, 15,25,35,45,55,65,75,85,95,105, ...., Ax + 5}

  1. Ibu Jari saja sebagai angka : ( Ax + 6)

{6, 16,26,36,46,56,66,76,86,96,106, ...., Ax + 6}

  1. Ibu jari dan jari tengah sebagai angka : (Ax + 7)

{7, 17,27,37,47,57,67,77,87,97,107, ...., Ax + 7}

  1. Ibu Jari ,jari telunjuk, jari tengah dan jari manis sebagai angka : ( Ax + 8)

{8, 18,28,38,48,58,68,78,88,98,108, ...., Ax + 8}

  1. Ibu jari dan jari tengah sebagai angka : (Ax + 9)

{ 9, 19,29,39,49,59,69,79,89,99,109,.., Ax + 9}

Catatat: Ax : bilangan cacah kelipatan 10

OPERASI METODE HANDTRyMATIKA

Contoh Pada Operasi Perkalian 12 x 14

Ingat : 12 = 10 + 2

14 = 10 + 4

Maka yang diselesaikan dahulu adalah perkalian 10 X 10 = 100

Berarti yang disimpan adalah 100.

Langkah 2

Jari di lipat dijumlahkan sebagai hasil puluhan

2 Puluhan + 4 puluhan

Langkah 3

2 Satuan x 4 satuan = 8 Satuan

Langkah Lengkap

Simpanan = 100 diperoleh dari 10 x 10

= 100 + 1 (2 puluhan + 4 puluhan = 60) + (2 satuan x 4 satuan = 8 )

= 100 + 60 + 8 = 168

Contoh Singkat Operasi yang Lain:

Perkalian 24 x 23.

Ingat simpanan 20 x 20 = 400 (disimpan), Sedang pengali Puluhan 2

( 400. + (2 (( 4 + 3)pul =(70))= 140) + (4 x 3 = 12)sat) = 552

  1. Perkalian 31 x 31

Ingat simpanan 30 x 30 = 900. Pengali puluhan 3

= { ( 900) + ((3 (1 + 1 = 20) = 60) + (1 x 1=1) } = 961.

  1. Perkalian 51 x 66

Ingat simpanan 50 x 50 = 2500. Pengali puluhan 5

6 dari angka 50 ke 66 nilainya 16

= { ( 2500) + ((5 ((1 + 16)= 170)= 850) + (1 x 16= 16) }

= 2500 + 850 + 16 = 3366

= 8.1000 + 630 + 6 = 6736.

Perkalian 9001 x 9001

Ingat simpanan 9000 x 9000 = 81.000.000. Pengali puluhan 900

= 81.000.000 + ((900 (1 pul+ 1pul =20) = 18000 + (1 x 1 = 1 )

= 81.000.000 + 90 ( 1 ratusan + 1 ratusan) =18.000 + (1 x 1= 1)

= 81.000.000 + 9 ( 1ribuan + 1 ribuan) + (1 x 1 = 1)

= 81.018.001.

PENUTUP

Rumus Metode Handtrymatika :

Misal perkalian antara variabel a x b (Ax+n) dengan (Ax + n)

y = Ax2 + Ax(n1 + n2)x + (n1 x n2)

Y = Hasil dari perkalian

Ax = bilangan cacah kelipatan 10

X = kelipatan 10 yang digunakan.

’n1 : bilangan satuan jari yang dilipat variabel a

’n2 : bilangan satuan jari yang dilipat variabel b

Penerapan pada Perkalian

Contoh Perkalian Berinterval variabel berinterval 0 s.d. 10

1. 14 x 16 = 102 + (4 + 6)pul + ( 4 x 6 ) = 100 + 100 + 24 = 224

2. 23 x 21 = 202 + 2(3 + 1)pul + ( 3 x 1 ) = 400 + 80 + 3 = 483

3. 25 x 26 = 202 + 2(5 + 6)pul + ( 5 x 6 ) = 400 + 220 + 30 = 650

4. 27 x 22 = 202 + 2(7 + 2)pul + ( 7 x 2 ) = 400 + 180 + 14 = 594

5. 28 x 31 = 202 + 2(8 + 11)pul + (8 x 11) = 400 + 380 + 88 = 868

Contoh Bentuk Perkalian Berinterval variabel berinterval 0 s.d.

  1. 6 X 7 = 02 + 0 ( 6 + 7 )sat + ( 6 X 7)sat = 0 + 0 + 42
  2. 14 x 6 = 0 + 0 (1 4 + 6 ) sat + ( 14 x 6)

= 0 + 0 + (10 x 6) + (4 x 6) = 84

3. 144 x 104 = 1002 + (44 + 4) rat + ( 44 X 4)sat

= 10000 + 4800+ (176) = 14976

4. 248 x 105 = 1002 + (148 + 5) rat + ( 148 X 5)sat

= 10000 + 15300+ (100 x 5 + 40 x 5 + 8 x 5)

= 10.000 + 15300 + 785 = 260405

. 10006 x 11007 = 100002 + (6 +1007)pul.ribu + (6 x 1007)

= 100000000 + 10130000 + (6 x 1000 + 6 x 7)

= 100000000 + 10130000 + 6042 = 110136042

Semoga bermanfaat

0 komentar:

Poskan Komentar

 
Powered By Blogger | Portal Design By Trik-tips Blog © 2009 | edited by O-pio | Best View: Firefox | Top